Computer Science > Computation and Language
[Submitted on 1 Apr 2024 (v1), last revised 9 Dec 2024 (this version, v3)]
Title:A Survey on Multilingual Large Language Models: Corpora, Alignment, and Bias
View PDF HTML (experimental)Abstract:Based on the foundation of Large Language Models (LLMs), Multilingual LLMs (MLLMs) have been developed to address the challenges faced in multilingual natural language processing, hoping to achieve knowledge transfer from high-resource languages to low-resource languages. However, significant limitations and challenges still exist, such as language imbalance, multilingual alignment, and inherent bias. In this paper, we aim to provide a comprehensive analysis of MLLMs, delving deeply into discussions surrounding these critical issues. First of all, we start by presenting an overview of MLLMs, covering their evolutions, key techniques, and multilingual capacities. Secondly, we explore the multilingual training corpora of MLLMs and the multilingual datasets oriented for downstream tasks that are crucial to enhance the cross-lingual capability of MLLMs. Thirdly, we survey the state-of-the-art studies of multilingual representations and investigate whether the current MLLMs can learn a universal language representation. Fourthly, we discuss bias on MLLMs, including its categories, evaluation metrics, and debiasing techniques. Finally, we discuss existing challenges and point out promising research directions of MLLMs.
Submission history
From: Ling Hu [view email][v1] Mon, 1 Apr 2024 05:13:56 UTC (3,034 KB)
[v2] Thu, 6 Jun 2024 16:04:15 UTC (4,536 KB)
[v3] Mon, 9 Dec 2024 14:30:11 UTC (5,063 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.