Computer Science > Computer Vision and Pattern Recognition
[Submitted on 28 Mar 2024 (v1), last revised 29 Jul 2025 (this version, v2)]
Title:Contrastive Test-Time Composition of Multiple LoRA Models for Image Generation
View PDF HTML (experimental)Abstract:Low-Rank Adaptation (LoRA) has emerged as a powerful and popular technique for personalization, enabling efficient adaptation of pre-trained image generation models for specific tasks without comprehensive retraining. While employing individual pre-trained LoRA models excels at representing single concepts, such as those representing a specific dog or a cat, utilizing multiple LoRA models to capture a variety of concepts in a single image still poses a significant challenge. Existing methods often fall short, primarily because the attention mechanisms within different LoRA models overlap, leading to scenarios where one concept may be completely ignored (e.g., omitting the dog) or where concepts are incorrectly combined (e.g., producing an image of two cats instead of one cat and one dog). We introduce CLoRA, a training-free approach that addresses these limitations by updating the attention maps of multiple LoRA models at test-time, and leveraging the attention maps to create semantic masks for fusing latent representations. This enables the generation of composite images that accurately reflect the characteristics of each LoRA. Our comprehensive qualitative and quantitative evaluations demonstrate that CLoRA significantly outperforms existing methods in multi-concept image generation using LoRAs.
Submission history
From: Tuna Han Salih Meral [view email][v1] Thu, 28 Mar 2024 18:58:43 UTC (40,181 KB)
[v2] Tue, 29 Jul 2025 20:38:01 UTC (43,081 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.