Computer Science > Machine Learning
[Submitted on 27 Mar 2024 (v1), last revised 7 Oct 2024 (this version, v2)]
Title:Deep Fusion: Capturing Dependencies in Contrastive Learning via Transformer Projection Heads
View PDF HTML (experimental)Abstract:Contrastive Learning (CL) has emerged as a powerful method for training feature extraction models using unlabeled data. Recent studies suggest that incorporating a linear projection head post-backbone significantly enhances model performance. In this work, we investigate the use of a transformer model as a projection head within the CL framework, aiming to exploit the transformer's capacity for capturing long-range dependencies across embeddings to further improve performance. Our key contributions are fourfold: First, we introduce a novel application of transformers in the projection head role for contrastive learning, marking the first endeavor of its kind. Second, our experiments reveal a compelling "Deep Fusion" phenomenon where the attention mechanism progressively captures the correct relational dependencies among samples from the same class in deeper layers. Third, we provide a theoretical framework that explains and supports this "Deep Fusion" behavior. Finally, we demonstrate through experimental results that our model achieves superior performance compared to the existing approach of using a feed-forward layer.
Submission history
From: Huanran Li [view email][v1] Wed, 27 Mar 2024 15:24:54 UTC (5,039 KB)
[v2] Mon, 7 Oct 2024 16:25:02 UTC (9,234 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.