Electrical Engineering and Systems Science > Systems and Control
[Submitted on 20 Mar 2024 (v1), last revised 19 Aug 2024 (this version, v4)]
Title:Augmented LRFS-based Filter: Holistic Tracking of Group Objects
View PDF HTML (experimental)Abstract:This paper addresses the problem of group target tracking (GTT), wherein multiple closely spaced targets within a group pose a coordinated motion. To improve the tracking performance, the labeled random finite sets (LRFSs) theory is adopted, and this paper develops a new kind of LRFSs, i.e., augmented LRFSs, which introduces group information into the definition of LRFSs. Specifically, for each element in an LRFS, the kinetic states, track label, and the corresponding group information of its represented target are incorporated. Furthermore, by means of the labeled multi-Bernoulli (LMB) filter with the proposed augmented LRFSs, the group structure is iteratively propagated and updated during the tracking process, which achieves the simultaneously estimation of the kinetic states, track label, and the corresponding group information of multiple group targets, and further improves the GTT tracking performance. Finally, simulation experiments are provided, which well demonstrates the effectiveness of the labeled multi-Bernoulli filter with the proposed augmented LRFSs for GTT tracking.
Submission history
From: Chaoqun Yang [view email][v1] Wed, 20 Mar 2024 12:54:05 UTC (1,218 KB)
[v2] Tue, 16 Apr 2024 11:04:40 UTC (2,052 KB)
[v3] Thu, 4 Jul 2024 23:53:08 UTC (829 KB)
[v4] Mon, 19 Aug 2024 11:37:02 UTC (2,542 KB)
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.