Computer Science > Computation and Language
[Submitted on 13 Mar 2024 (v1), last revised 18 Nov 2024 (this version, v2)]
Title:Targeted Efficient Fine-tuning: Optimizing Parameter Updates with Data-Driven Sample Selection
View PDF HTML (experimental)Abstract:Fine-tuning all parameters of Large Language Models (LLMs) is computationally expensive. Parameter-Efficient Fine-Tuning (PEFT) methods address this by selectively fine-tuning specific parameters. Most of the parameter efficient fine-tuning (PEFT) methods center on selecting or introducing a set of parameters to be fine-tuned. However, there are few methods that consider the impact of data samples on parameter selecting. Representative data driven methods include FISH Mask based method, which randomly selects a portion of data samples as a basis when selecting parameters. However, this random data sample selection method cannot select optimal parameters for unstable data distribution. In this work, we introduce a data-centric approach and propose the Iterative Range Decreasing (IRD) algorithm to optimize the sample-parameter pair selection in FISH Mask. IRD iteratively refines the selection by identifying subsets of samples and parameters exhibiting higher Fisher information. We demonstrate the effectiveness and rationality of proposed strategy by conducting experiments on GLUE benchmark. Experimental results show our strategy optimizes the parameter selection and achieves preferable performance over some typical baseline methods.
Submission history
From: Kang Xue [view email][v1] Wed, 13 Mar 2024 12:50:23 UTC (1,443 KB)
[v2] Mon, 18 Nov 2024 07:32:16 UTC (186 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.