Skip to main content
Cornell University
We gratefully acknowledge support from the Simons Foundation, member institutions, and all contributors. Donate
arxiv logo > cs > arXiv:2403.07858

Help | Advanced Search

arXiv logo
Cornell University Logo

quick links

  • Login
  • Help Pages
  • About

Computer Science > Distributed, Parallel, and Cluster Computing

arXiv:2403.07858 (cs)
[Submitted on 12 Mar 2024 (v1), last revised 20 Mar 2024 (this version, v2)]

Title:Accelerating Biclique Counting on GPU

Authors:Linshan Qiu, Zhonggen Li, Xiangyu Ke, Lu Chen, Yunjun Gao
View a PDF of the paper titled Accelerating Biclique Counting on GPU, by Linshan Qiu and 4 other authors
View PDF HTML (experimental)
Abstract:Counting (p,q)-bicliques in bipartite graphs poses a foundational challenge with broad applications, from densest subgraph discovery in algorithmic research to personalized content recommendation in practical scenarios. Despite its significance, current leading (p,q)-biclique counting algorithms fall short, particularly when faced with larger graph sizes and clique scales. Fortunately, the problem's inherent structure, allowing for the independent counting of each biclique starting from every vertex, combined with a substantial set intersections, makes it highly amenable to parallelization. Recent successes in GPU-accelerated algorithms across various domains motivate our exploration into harnessing the parallelism power of GPUs to efficiently address the (p,q)-biclique counting challenge. We introduce GBC (GPU-based Biclique Counting), a novel approach designed to enable efficient and scalable (p,q)-biclique counting on GPUs. To address major bottleneck arising from redundant comparisons in set intersections (occupying an average of 90% of the runtime), we introduce a novel data structure that hashes adjacency lists into truncated bitmaps to enable efficient set intersection on GPUs via bit-wise AND operations. Our innovative hybrid DFS-BFS exploration strategy further enhances thread utilization and effectively manages memory constraints. A composite load balancing strategy, integrating pre-runtime and runtime workload allocation, ensures equitable distribution among threads. Additionally, we employ vertex reordering and graph partitioning strategies for improved compactness and scalability. Experimental evaluations on eight real-life and two synthetic datasets demonstrate that GBC outperforms state-of-the-art algorithms by a substantial margin. In particular, GBC achieves an average speedup of 497.8x, with the largest instance achieving a remarkable 1217.7x speedup when p = q = 8.
Comments: This paper has been accepted by ICDE24
Subjects: Distributed, Parallel, and Cluster Computing (cs.DC)
Cite as: arXiv:2403.07858 [cs.DC]
  (or arXiv:2403.07858v2 [cs.DC] for this version)
  https://doi.org/10.48550/arXiv.2403.07858
arXiv-issued DOI via DataCite

Submission history

From: Linshan Qiu [view email]
[v1] Tue, 12 Mar 2024 17:48:11 UTC (2,670 KB)
[v2] Wed, 20 Mar 2024 13:08:25 UTC (2,670 KB)
Full-text links:

Access Paper:

    View a PDF of the paper titled Accelerating Biclique Counting on GPU, by Linshan Qiu and 4 other authors
  • View PDF
  • HTML (experimental)
  • TeX Source
  • Other Formats
license icon view license
Current browse context:
cs.DC
< prev   |   next >
new | recent | 2024-03
Change to browse by:
cs

References & Citations

  • NASA ADS
  • Google Scholar
  • Semantic Scholar
export BibTeX citation Loading...

BibTeX formatted citation

×
Data provided by:

Bookmark

BibSonomy logo Reddit logo

Bibliographic and Citation Tools

Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)

Code, Data and Media Associated with this Article

alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)

Demos

Replicate (What is Replicate?)
Hugging Face Spaces (What is Spaces?)
TXYZ.AI (What is TXYZ.AI?)

Recommenders and Search Tools

Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
  • Author
  • Venue
  • Institution
  • Topic

arXivLabs: experimental projects with community collaborators

arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.

Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.

Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.

Which authors of this paper are endorsers? | Disable MathJax (What is MathJax?)
  • About
  • Help
  • contact arXivClick here to contact arXiv Contact
  • subscribe to arXiv mailingsClick here to subscribe Subscribe
  • Copyright
  • Privacy Policy
  • Web Accessibility Assistance
  • arXiv Operational Status
    Get status notifications via email or slack