Electrical Engineering and Systems Science > Systems and Control
[Submitted on 25 Feb 2024]
Title:Nonparametric Steady-state Learning for Robust Output Regulation of Nonlinear Output Feedback Systems
View PDF HTML (experimental)Abstract:This article addresses the nonadaptive and robust output regulation problem of the general nonlinear output feedback system with error output. The global robust output regulation problem for a class of general output feedback nonlinear systems with an uncertain exosystem and high relative degree can be tackled by constructing a linear generic internal model provided that a continuous nonlinear mapping exists. Leveraging the presented nonadaptive framework facilitates the conversion of the nonlinear robust output regulation problem into a robust nonadaptive stabilization endeavour for the augmented system endowed with Input-to-State Stable dynamics, removing the need for constructing a specific Lyapunov function with positive semidefinite derivatives. To ensure the feasibility of the nonlinear mapping, the approach is extended by incorporating the nonparametric learning framework. Moreover, the introduced nonparametric learning framework provides the ability to learn the dynamics of the steady-state/input behaviour from the signal generated from the internal model only using the output error feedback. As a result, the nonadaptive/nonparametric approach can be advantageous by guaranteeing convergence of the estimation and tracking error even when the underlying controlled system dynamics are complex or poorly understood. The effectiveness of the theoretical results is illustrated for a controlled duffing system and a continuously stirred tank reactor
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.