Computer Science > Information Retrieval
[Submitted on 19 Feb 2024]
Title:Large Language Models for Stemming: Promises, Pitfalls and Failures
View PDF HTML (experimental)Abstract:Text stemming is a natural language processing technique that is used to reduce words to their base form, also known as the root form. The use of stemming in IR has been shown to often improve the effectiveness of keyword-matching models such as BM25. However, traditional stemming methods, focusing solely on individual terms, overlook the richness of contextual information. Recognizing this gap, in this paper, we investigate the promising idea of using large language models (LLMs) to stem words by leveraging its capability of context understanding. With this respect, we identify three avenues, each characterised by different trade-offs in terms of computational cost, effectiveness and robustness : (1) use LLMs to stem the vocabulary for a collection, i.e., the set of unique words that appear in the collection (vocabulary stemming), (2) use LLMs to stem each document separately (contextual stemming), and (3) use LLMs to extract from each document entities that should not be stemmed, then use vocabulary stemming to stem the rest of the terms (entity-based contextual stemming). Through a series of empirical experiments, we compare the use of LLMs for stemming with that of traditional lexical stemmers such as Porter and Krovetz for English text. We find that while vocabulary stemming and contextual stemming fail to achieve higher effectiveness than traditional stemmers, entity-based contextual stemming can achieve a higher effectiveness than using Porter stemmer alone, under specific conditions.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.