Computer Science > Multimedia
[Submitted on 12 Feb 2024 (v1), last revised 18 Oct 2024 (this version, v3)]
Title:Synthesizing Sentiment-Controlled Feedback For Multimodal Text and Image Data
View PDF HTML (experimental)Abstract:The ability to generate sentiment-controlled feedback in response to multimodal inputs comprising text and images addresses a critical gap in human-computer interaction. This capability allows systems to provide empathetic, accurate, and engaging responses, with useful applications in education, healthcare, marketing, and customer service. To this end, we have constructed a large-scale Controllable Multimodal Feedback Synthesis (CMFeed) dataset and propose a controllable feedback synthesis system. The system features an encoder, decoder, and controllability block for textual and visual inputs. It extracts features using a transformer and Faster R-CNN networks, combining them to generate feedback. The CMFeed dataset includes images, texts, reactions to the posts, human comments with relevance scores, and reactions to these comments. These reactions train the model to produce feedback with specified sentiments, achieving a sentiment classification accuracy of 77.23\%, which is 18.82\% higher than the accuracy without controllability. The system also incorporates a similarity module for assessing feedback relevance through rank-based metrics and an interpretability technique to analyze the contributions of textual and visual features during feedback generation. Access to the CMFeed dataset and the system's code is available at this https URL.
Submission history
From: Puneet Kumar [view email][v1] Mon, 12 Feb 2024 13:27:22 UTC (6,788 KB)
[v2] Thu, 6 Jun 2024 00:26:26 UTC (25,383 KB)
[v3] Fri, 18 Oct 2024 02:50:53 UTC (7,266 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.