Computer Science > Networking and Internet Architecture
[Submitted on 9 Feb 2024]
Title:DASH Adaptation Algorithm Based on Adaptive Forgetting Factor Estimation
View PDFAbstract:The wide adoption of multimedia service capable mobile devices, the availability of better networks with higher bandwidths, and the availability of platforms offering digital content has led to an increasing popularity of multimedia streaming services. However, multimedia streaming services can be subject to different factors that affect the quality perceived by the users, such as service interruptions or quality oscillations due to changing network conditions, particularly in mobile networks. Dynamic Adaptive Streaming over HTTP (DASH), leverages the use of content-distribution networks and the capabilities of the multimedia devices to allow multimedia players to dynamically adapt the quality of the media streaming to the available bandwidth and the device characteristics. While many elements of DASH are standardized, the algorithms providing the dynamic adaptation of the streaming are not. The adaptation is often based on the estimation of the throughput or a buffer control mechanism. In this paper, we present a new throughput estimation adaptation algorithm based on a statistical method named Adaptive Forgetting Factor (AFF). Using this method, the adaptation logic is able to react appropriately to the different conditions of different types of networks. A set of experiments with different traffic profiles show that the proposed algorithm improves video quality performance in both wired and wireless environments.
Submission history
From: Carlos M. Lentisco [view email][v1] Fri, 9 Feb 2024 15:41:04 UTC (1,473 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.