Computer Science > Computer Vision and Pattern Recognition
[Submitted on 8 Feb 2024]
Title:Efficient Expression Neutrality Estimation with Application to Face Recognition Utility Prediction
View PDFAbstract:The recognition performance of biometric systems strongly depends on the quality of the compared biometric samples. Motivated by the goal of establishing a common understanding of face image quality and enabling system interoperability, the committee draft of ISO/IEC 29794-5 introduces expression neutrality as one of many component quality elements affecting recognition performance. In this study, we train classifiers to assess facial expression neutrality using seven datasets. We conduct extensive performance benchmarking to evaluate their classification and face recognition utility prediction abilities. Our experiments reveal significant differences in how each classifier distinguishes "neutral" from "non-neutral" expressions. While Random Forests and AdaBoost classifiers are most suitable for distinguishing neutral from non-neutral facial expressions with high accuracy, they underperform compared to Support Vector Machines in predicting face recognition utility.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.