Computer Science > Machine Learning
[Submitted on 5 Feb 2024 (v1), last revised 5 Jun 2024 (this version, v2)]
Title:Deconstructing the Goldilocks Zone of Neural Network Initialization
View PDF HTML (experimental)Abstract:The second-order properties of the training loss have a massive impact on the optimization dynamics of deep learning models. Fort & Scherlis (2019) discovered that a large excess of positive curvature and local convexity of the loss Hessian is associated with highly trainable initial points located in a region coined the "Goldilocks zone". Only a handful of subsequent studies touched upon this relationship, so it remains largely unexplained. In this paper, we present a rigorous and comprehensive analysis of the Goldilocks zone for homogeneous neural networks. In particular, we derive the fundamental condition resulting in excess of positive curvature of the loss, explaining and refining its conventionally accepted connection to the initialization norm. Further, we relate the excess of positive curvature to model confidence, low initial loss, and a previously unknown type of vanishing cross-entropy loss gradient. To understand the importance of excessive positive curvature for trainability of deep networks, we optimize fully-connected and convolutional architectures outside the Goldilocks zone and analyze the emergent behaviors. We find that strong model performance is not perfectly aligned with the Goldilocks zone, calling for further research into this relationship.
Submission history
From: Artem Vysogorets [view email][v1] Mon, 5 Feb 2024 23:06:48 UTC (11,878 KB)
[v2] Wed, 5 Jun 2024 02:44:31 UTC (10,859 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.