Computer Science > Neural and Evolutionary Computing
[Submitted on 31 Jan 2024 (v1), last revised 2 Apr 2024 (this version, v2)]
Title:SCAPE: Searching Conceptual Architecture Prompts using Evolution
View PDFAbstract:Conceptual architecture involves a highly creative exploration of novel ideas, often taken from other disciplines as architects consider radical new forms, materials, textures and colors for buildings. While today's generative AI systems can produce remarkable results, they lack the creativity demonstrated for decades by evolutionary algorithms. SCAPE, our proposed tool, combines evolutionary search with generative AI, enabling users to explore creative and good quality designs inspired by their initial input through a simple point and click interface. SCAPE injects randomness into generative AI, and enables memory, making use of the built-in language skills of GPT-4 to vary prompts via text-based mutation and crossover. We demonstrate that compared to DALL-E 3, SCAPE enables a 67% improvement in image novelty, plus improvements in quality and effectiveness of use; we show that in just three iterations SCAPE has a 24% image novelty increase enabling effective exploration, plus optimization of images by users. We use more than 20 independent architects to assess SCAPE, who provide markedly positive feedback.
Submission history
From: Dr Peter J. Bentley [view email][v1] Wed, 31 Jan 2024 10:25:45 UTC (4,038 KB)
[v2] Tue, 2 Apr 2024 10:05:33 UTC (7,821 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.