Computer Science > Emerging Technologies
[Submitted on 20 Jan 2024]
Title:3D Receiver for Molecular Communications in Internet of Organoids
View PDF HTML (experimental)Abstract:Organoids have garnered attention due to their effectiveness in modeling the 3D structure of organ interactions. However, the communication engineering perspective has received relatively little attention. One way to achieve organoids communication is molecular communication (MC). Molecular communication is a bio-inspired communication paradigm that uses molecules as information carriers. It is considered one of the most promising methods for enabling the Internet of Nano-Things (IoNT) and nanonetworks. BioFETs are commonly used to implement practical MC receivers. However, most previous analyses have focused on a planar device, neglecting considerations like the threshold voltage and its potential 3D structure. This paper introduces the first FinFET-based MC receiver that covers both the top and side gates with receptors. Both binding noise and flicker noise are considered in the analysis. The performance, in terms of signal-to-noise ratio (SNR) and symbol error probability (SEP), is compared with that of the 2D receiver.
Current browse context:
cs.ET
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.