Computer Science > Cryptography and Security
[Submitted on 16 Jan 2024]
Title:Mitigating Bias in Machine Learning Models for Phishing Webpage Detection
View PDFAbstract:The widespread accessibility of the Internet has led to a surge in online fraudulent activities, underscoring the necessity of shielding users' sensitive information from cybercriminals. Phishing, a well-known cyberattack, revolves around the creation of phishing webpages and the dissemination of corresponding URLs, aiming to deceive users into sharing their sensitive information, often for identity theft or financial gain. Various techniques are available for preemptively categorizing zero-day phishing URLs by distilling unique attributes and constructing predictive models. However, these existing techniques encounter unresolved issues. This proposal delves into persistent challenges within phishing detection solutions, particularly concentrated on the preliminary phase of assembling comprehensive datasets, and proposes a potential solution in the form of a tool engineered to alleviate bias in ML models. Such a tool can generate phishing webpages for any given set of legitimate URLs, infusing randomly selected content and visual-based phishing features. Furthermore, we contend that the tool holds the potential to assess the efficacy of existing phishing detection solutions, especially those trained on confined datasets.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.