Computer Science > Hardware Architecture
[Submitted on 16 Jan 2024]
Title:DeMM: A Decoupled Matrix Multiplication Engine Supporting Relaxed Structured Sparsity
View PDFAbstract:Deep Learning (DL) has achieved unprecedented success in various application domains. Meanwhile, model pruning has emerged as a viable solution to reduce the footprint of DL models in mobile applications, without compromising their accuracy. To enable the matrix engines built for dense DL models to also handle their pruned counterparts, pruned DL models follow a fine-grained structured sparsity pattern of 1:4, or 2:4, whereby in each group of four contiguous values, at least one, or two, respectively, must be non-zero. Structured sparsity has recently also moved to coarser (relaxed) cases of N:128, or N:256, for small values of N, targeting a wider range of sparsity (10%-90%) for the DL models. In this work, we design an accelerator that operates, by construction, on wide blocks with relaxed structured sparsity. In contrast to the conventional systolic array archetype, the new engine decouples the memory part of the systolic array from the multiply-add units. The memory block comprises 1 write and N read ports, with the number of read ports being equal to the number of non-zero elements per row. The multiply-add units connect directly to each read port and complete the multiplication in a row-wise product-first order. More importantly, simple reconfiguration facilitates more dense patterns. The experimental evaluation demonstrates substantial latency improvements over current state-of-the-art systolic array engines built for fine-grained and relaxed structured sparsity.
Submission history
From: Christodoulos Peltekis [view email][v1] Tue, 16 Jan 2024 07:51:15 UTC (1,179 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.