Computer Science > Networking and Internet Architecture
[Submitted on 12 Jan 2024 (v1), last revised 4 Jul 2024 (this version, v2)]
Title:A Semantic-Aware Multiple Access Scheme for Distributed, Dynamic 6G-Based Applications
View PDF HTML (experimental)Abstract:The emergence of the semantic-aware paradigm presents opportunities for innovative services, especially in the context of 6G-based applications. Although significant progress has been made in semantic extraction techniques, the incorporation of semantic information into resource allocation decision-making is still in its early stages, lacking consideration of the requirements and characteristics of future systems. In response, this paper introduces a novel formulation for the problem of multiple access to the wireless spectrum. It aims to optimize the utilization-fairness trade-off, using the $\alpha$-fairness metric, while accounting for user data correlation by introducing the concepts of self- and assisted throughputs. Initially, the problem is analyzed to identify its optimal solution. Subsequently, a Semantic-Aware Multi-Agent Double and Dueling Deep Q-Learning (SAMA-D3QL) technique is proposed. This method is grounded in Model-free Multi-Agent Deep Reinforcement Learning (MADRL), enabling the user equipment to autonomously make decisions regarding wireless spectrum access based solely on their local individual observations. The efficiency of the proposed technique is evaluated through two scenarios: single-channel and multi-channel. The findings illustrate that, across a spectrum of $\alpha$ values, association matrices, and channels, SAMA-D3QL consistently outperforms alternative approaches. This establishes it as a promising candidate for facilitating the realization of future federated, dynamically evolving applications.
Submission history
From: Masoud Shokrnezhad [view email][v1] Fri, 12 Jan 2024 00:32:38 UTC (3,509 KB)
[v2] Thu, 4 Jul 2024 18:48:25 UTC (3,508 KB)
Current browse context:
cs.NI
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.