Computer Science > Computer Vision and Pattern Recognition
[Submitted on 11 Jan 2024]
Title:Surface Normal Estimation with Transformers
View PDF HTML (experimental)Abstract:We propose the use of a Transformer to accurately predict normals from point clouds with noise and density variations. Previous learning-based methods utilize PointNet variants to explicitly extract multi-scale features at different input scales, then focus on a surface fitting method by which local point cloud neighborhoods are fitted to a geometric surface approximated by either a polynomial function or a multi-layer perceptron (MLP). However, fitting surfaces to fixed-order polynomial functions can suffer from overfitting or underfitting, and learning MLP-represented hyper-surfaces requires pre-generated per-point weights. To avoid these limitations, we first unify the design choices in previous works and then propose a simplified Transformer-based model to extract richer and more robust geometric features for the surface normal estimation task. Through extensive experiments, we demonstrate that our Transformer-based method achieves state-of-the-art performance on both the synthetic shape dataset PCPNet, and the real-world indoor scene dataset SceneNN, exhibiting more noise-resilient behavior and significantly faster inference. Most importantly, we demonstrate that the sophisticated hand-designed modules in existing works are not necessary to excel at the task of surface normal estimation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.