Computer Science > Cryptography and Security
[Submitted on 10 Jan 2024]
Title:SENet: Visual Detection of Online Social Engineering Attack Campaigns
View PDF HTML (experimental)Abstract:Social engineering (SE) aims at deceiving users into performing actions that may compromise their security and privacy. These threats exploit weaknesses in human's decision making processes by using tactics such as pretext, baiting, impersonation, etc. On the web, SE attacks include attack classes such as scareware, tech support scams, survey scams, sweepstakes, etc., which can result in sensitive data leaks, malware infections, and monetary loss. For instance, US consumers lose billions of dollars annually due to various SE attacks. Unfortunately, generic social engineering attacks remain understudied, compared to other important threats, such as software vulnerabilities and exploitation, network intrusions, malicious software, and phishing. The few existing technical studies that focus on social engineering are limited in scope and mostly focus on measurements rather than developing a generic defense. To fill this gap, we present SEShield, a framework for in-browser detection of social engineering attacks. SEShield consists of three main components: (i) a custom security crawler, called SECrawler, that is dedicated to scouting the web to collect examples of in-the-wild SE attacks; (ii) SENet, a deep learning-based image classifier trained on data collected by SECrawler that aims to detect the often glaring visual traits of SE attack pages; and (iii) SEGuard, a proof-of-concept extension that embeds SENet into the web browser and enables real-time SE attack detection. We perform an extensive evaluation of our system and show that SENet is able to detect new instances of SE attacks with a detection rate of up to 99.6% at 1% false positive, thus providing an effective first defense against SE attacks on the web.
Submission history
From: Karthika Subramani [view email][v1] Wed, 10 Jan 2024 22:25:44 UTC (19,124 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.