Computer Science > Software Engineering
[Submitted on 9 Jan 2024]
Title:How Dataflow Diagrams Impact Software Security Analysis: an Empirical Experiment
View PDF HTML (experimental)Abstract:Models of software systems are used throughout the software development lifecycle. Dataflow diagrams (DFDs), in particular, are well-established resources for security analysis. Many techniques, such as threat modelling, are based on DFDs of the analysed application. However, their impact on the performance of analysts in a security analysis setting has not been explored before. In this paper, we present the findings of an empirical experiment conducted to investigate this effect. Following a within-groups design, participants were asked to solve security-relevant tasks for a given microservice application. In the control condition, the participants had to examine the source code manually. In the model-supported condition, they were additionally provided a DFD of the analysed application and traceability information linking model items to artefacts in source code. We found that the participants (n = 24) performed significantly better in answering the analysis tasks correctly in the model-supported condition (41% increase in analysis correctness). Further, participants who reported using the provided traceability information performed better in giving evidence for their answers (315% increase in correctness of evidence). Finally, we identified three open challenges of using DFDs for security analysis based on the insights gained in the experiment.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.