Mathematics > Optimization and Control
[Submitted on 8 Jan 2024]
Title:Finite-Time Decoupled Convergence in Nonlinear Two-Time-Scale Stochastic Approximation
View PDFAbstract:In two-time-scale stochastic approximation (SA), two iterates are updated at varying speeds using different step sizes, with each update influencing the other. Previous studies in linear two-time-scale SA have found that the convergence rates of the mean-square errors for these updates are dependent solely on their respective step sizes, leading to what is referred to as decoupled convergence. However, the possibility of achieving this decoupled convergence in nonlinear SA remains less understood. Our research explores the potential for finite-time decoupled convergence in nonlinear two-time-scale SA. We find that under a weaker Lipschitz condition, traditional analyses are insufficient for achieving decoupled convergence. This finding is further numerically supported by a counterexample. But by introducing an additional condition of nested local linearity, we show that decoupled convergence is still feasible, contingent on the appropriate choice of step sizes associated with smoothness parameters. Our analysis depends on a refined characterization of the matrix cross term between the two iterates and utilizes fourth-order moments to control higher-order approximation errors induced by the local linearity assumption.
Current browse context:
math.OC
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.