Computer Science > Machine Learning
[Submitted on 4 Jan 2024 (v1), last revised 12 Sep 2024 (this version, v2)]
Title:Generating synthetic data for neural operators
View PDF HTML (experimental)Abstract:Numerous developments in the recent literature show the promising potential of deep learning in obtaining numerical solutions to partial differential equations (PDEs) beyond the reach of current numerical solvers. However, data-driven neural operators all suffer from a similar problem: the data needed to train a network depends on classical numerical solvers such as finite difference or finite element, among others. In this paper, we propose a different approach to generating synthetic functional training data that does not require solving a PDE numerically. We draw a large number $N$ of independent and identically distributed 'random functions' $u_j$ from the underlying solution space (e.g., $H_0^1(\Omega)$) in which we know the solution lies according to classical theory. We then plug each such random candidate solution into the equation and get a corresponding right-hand side function $f_j$ for the equation, and consider $(f_j, u_j)_{j=1}^N$ as supervised training data for learning the underlying inverse problem $f \rightarrow u$. This `backwards' approach to generating training data only requires derivative computations, in contrast to standard `forward' approaches, which require a numerical PDE solver, enabling us to generate many data points quickly and efficiently. While the idea is simple, we hope this method will expand the potential for developing neural PDE solvers that do not depend on classical numerical solvers.
Submission history
From: Erisa Hasani [view email][v1] Thu, 4 Jan 2024 18:31:21 UTC (494 KB)
[v2] Thu, 12 Sep 2024 15:40:45 UTC (1,313 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.