Computer Science > Information Theory
[Submitted on 22 Dec 2023 (v1), last revised 31 Jul 2024 (this version, v2)]
Title:Error-Correction Performance of Regular Ring-Linear LDPC Codes over Lee Channels
View PDFAbstract:Most low-density parity-check (LDPC) code constructions are considered over finite fields. In this work, we focus on regular LDPC codes over integer residue rings and analyze their performance with respect to the Lee metric. Their error-correction performance is studied over two channel models, in the Lee metric. The first channel model is a discrete memoryless channel, whereas in the second channel model an error vector is drawn uniformly at random from all vectors of a fixed Lee weight. It is known that the two channel laws coincide in the asymptotic regime, meaning that their marginal distributions match. For both channel models, we derive upper bounds on the block error probability in terms of a random coding union bound as well as sphere packing bounds that make use of the marginal distribution of the considered channels. We estimate the decoding error probability of regular LDPC code ensembles over the channels using the marginal distribution and determining the expected Lee weight distribution of a random LDPC code over a finite integer ring. By means of density evolution and finite-length simulations, we estimate the error-correction performance of selected LDPC code ensembles under belief propagation decoding and a low-complexity symbol message passing decoding algorithm and compare the performances. The analysis developed in this paper may serve to design regular LDPC codes over integer residue rings for storage and cryptographic application.
Submission history
From: Jessica Bariffi [view email][v1] Fri, 22 Dec 2023 13:21:07 UTC (815 KB)
[v2] Wed, 31 Jul 2024 08:43:30 UTC (936 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.