Computer Science > Machine Learning
[Submitted on 6 Dec 2023 (v1), last revised 19 Mar 2024 (this version, v2)]
Title:GeoShapley: A Game Theory Approach to Measuring Spatial Effects in Machine Learning Models
View PDFAbstract:This paper introduces GeoShapley, a game theory approach to measuring spatial effects in machine learning models. GeoShapley extends the Nobel Prize-winning Shapley value framework in game theory by conceptualizing location as a player in a model prediction game, which enables the quantification of the importance of location and the synergies between location and other features in a model. GeoShapley is a model-agnostic approach and can be applied to statistical or black-box machine learning models in various structures. The interpretation of GeoShapley is directly linked with spatially varying coefficient models for explaining spatial effects and additive models for explaining non-spatial effects. Using simulated data, GeoShapley values are validated against known data-generating processes and are used for cross-comparison of seven statistical and machine learning models. An empirical example of house price modeling is used to illustrate GeoShapley's utility and interpretation with real world data. The method is available as an open-source Python package named geoshapley.
Submission history
From: Ziqi Li [view email][v1] Wed, 6 Dec 2023 18:39:29 UTC (4,063 KB)
[v2] Tue, 19 Mar 2024 15:41:44 UTC (4,183 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.