Computer Science > Robotics
[Submitted on 4 Dec 2023 (v1), last revised 26 Dec 2024 (this version, v4)]
Title:Working Backwards: Learning to Place by Picking
View PDF HTML (experimental)Abstract:We present placing via picking (PvP), a method to autonomously collect real-world demonstrations for a family of placing tasks in which objects must be manipulated to specific, contact-constrained locations. With PvP, we approach the collection of robotic object placement demonstrations by reversing the grasping process and exploiting the inherent symmetry of the pick and place problems. Specifically, we obtain placing demonstrations from a set of grasp sequences of objects initially located at their target placement locations. Our system can collect hundreds of demonstrations in contact-constrained environments without human intervention using two modules: compliant control for grasping and tactile regrasping. We train a policy directly from visual observations through behavioural cloning, using the autonomously-collected demonstrations. By doing so, the policy can generalize to object placement scenarios outside of the training environment without privileged information (e.g., placing a plate picked up from a table). We validate our approach in home robot scenarios that include dishwasher loading and table setting. Our approach yields robotic placing policies that outperform policies trained with kinesthetic teaching, both in terms of success rate and data efficiency, while requiring no human supervision.
Submission history
From: Jonathan Kelly [view email][v1] Mon, 4 Dec 2023 21:32:00 UTC (42,063 KB)
[v2] Wed, 20 Mar 2024 19:57:24 UTC (49,119 KB)
[v3] Tue, 9 Jul 2024 15:21:24 UTC (49,117 KB)
[v4] Thu, 26 Dec 2024 03:44:08 UTC (49,117 KB)
Current browse context:
cs.RO
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.