Computer Science > Information Theory
[Submitted on 30 Nov 2023 (v1), last revised 19 Jan 2024 (this version, v2)]
Title:Low-Complexity Linear Programming Based Decoding of Quantum LDPC codes
View PDF HTML (experimental)Abstract:This paper proposes two approaches for reducing the impact of the error floor phenomenon when decoding quantum low-density parity-check codes with belief propagation based algorithms. First, a low-complexity syndrome-based linear programming (SB-LP) decoding algorithm is proposed, and second, the proposed SB-LP is applied as a post-processing step after syndrome-based min-sum (SB-MS) decoding. For the latter case, a new early stopping criterion is introduced to decide when to activate the SB-LP algorithm, avoiding executing a predefined maximum number of iterations for the SB-MS decoder. Simulation results show, for a sample hypergraph code, that the proposed decoder can lower the error floor by two to three orders of magnitude compared to SB-MS for the same total number of decoding iterations.
Submission history
From: Sana Javed [view email][v1] Thu, 30 Nov 2023 12:01:04 UTC (1,229 KB)
[v2] Fri, 19 Jan 2024 15:53:11 UTC (1,229 KB)
Current browse context:
cs.IT
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.