Computer Science > Multiagent Systems
[Submitted on 28 Nov 2023]
Title:Multi-agent statistical discriminative sub-trajectory mining and an application to NBA basketball
View PDFAbstract:Improvements in tracking technology through optical and computer vision systems have enabled a greater understanding of the movement-based behaviour of multiple agents, including in team sports. In this study, a Multi-Agent Statistically Discriminative Sub-Trajectory Mining (MA-Stat-DSM) method is proposed that takes a set of binary-labelled agent trajectory matrices as input and incorporates Hausdorff distance to identify sub-matrices that statistically significantly discriminate between the two groups of labelled trajectory matrices. Utilizing 2015/16 SportVU NBA tracking data, agent trajectory matrices representing attacks consisting of the trajectories of five agents (the ball, shooter, last passer, shooter defender, and last passer defender), were truncated to correspond to the time interval following the receipt of the ball by the last passer, and labelled as effective or ineffective based on a definition of attack effectiveness that we devise in the current study. After identifying appropriate parameters for MA-Stat-DSM by iteratively applying it to all matches involving the two top- and two bottom-placed teams from the 2015/16 NBA season, the method was then applied to selected matches and could identify and visualize the portions of plays, e.g., involving passing, on-, and/or off-the-ball movements, which were most relevant in rendering attacks effective or ineffective.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.