Computer Science > Cryptography and Security
[Submitted on 27 Nov 2023]
Title:Darknet Traffic Analysis A Systematic Literature Review
View PDFAbstract:The primary objective of an anonymity tool is to protect the anonymity of its users through the implementation of strong encryption and obfuscation techniques. As a result, it becomes very difficult to monitor and identify users activities on these networks. Moreover, such systems have strong defensive mechanisms to protect users against potential risks, including the extraction of traffic characteristics and website fingerprinting. However, the strong anonymity feature also functions as a refuge for those involved in illicit activities who aim to avoid being traced on the network. As a result, a substantial body of research has been undertaken to examine and classify encrypted traffic using machine learning techniques. This paper presents a comprehensive examination of the existing approaches utilized for the categorization of anonymous traffic as well as encrypted network traffic inside the darknet. Also, this paper presents a comprehensive analysis of methods of darknet traffic using machine learning techniques to monitor and identify the traffic attacks inside the darknet.
Submission history
From: Javeriah Saleem Miss [view email][v1] Mon, 27 Nov 2023 19:27:50 UTC (1,047 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.