Computer Science > Computer Science and Game Theory
[Submitted on 26 Nov 2023 (v1), last revised 17 Dec 2024 (this version, v2)]
Title:On the Convergence of Learning Algorithms in Bayesian Auction Games
View PDF HTML (experimental)Abstract:Equilibrium problems in Bayesian auction games can be described as systems of differential equations. Depending on the model assumptions, these equations might be such that we do not have a rigorous mathematical solution theory. The lack of analytical or numerical techniques with guaranteed convergence for the equilibrium problem has plagued the field and limited equilibrium analysis to rather simple auction models such as single-object auctions. Recent advances in equilibrium learning led to algorithms that find equilibrium under a wide variety of model assumptions. We analyze first- and second-price auctions where simple learning algorithms converge to an equilibrium. The equilibrium problem in auctions is equivalent to solving an infinite-dimensional variational inequality (VI). Monotonicity and the Minty condition are the central sufficient conditions for learning algorithms to converge to an equilibrium in such VIs. We show that neither monotonicity nor pseudo- or quasi-monotonicity holds for the respective VIs. The second-price auction's equilibrium is a Minty-type solution, but the first-price auction is not. However, the Bayes--Nash equilibrium is the unique solution to the VI within the class of uniformly increasing bid functions, which ensures that gradient-based algorithms attain the equilibrium in case of convergence, as also observed in numerical experiments.
Submission history
From: Fabian Raoul Pieroth [view email][v1] Sun, 26 Nov 2023 19:44:15 UTC (70 KB)
[v2] Tue, 17 Dec 2024 14:02:04 UTC (77 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.