Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Nov 2023]
Title:Class Gradient Projection For Continual Learning
View PDFAbstract:Catastrophic forgetting is one of the most critical challenges in Continual Learning (CL). Recent approaches tackle this problem by projecting the gradient update orthogonal to the gradient subspace of existing tasks. While the results are remarkable, those approaches ignore the fact that these calculated gradients are not guaranteed to be orthogonal to the gradient subspace of each class due to the class deviation in tasks, e.g., distinguishing "Man" from "Sea" v.s. differentiating "Boy" from "Girl". Therefore, this strategy may still cause catastrophic forgetting for some classes. In this paper, we propose Class Gradient Projection (CGP), which calculates the gradient subspace from individual classes rather than tasks. Gradient update orthogonal to the gradient subspace of existing classes can be effectively utilized to minimize interference from other classes. To improve the generalization and efficiency, we further design a Base Refining (BR) algorithm to combine similar classes and refine class bases dynamically. Moreover, we leverage a contrastive learning method to improve the model's ability to handle unseen tasks. Extensive experiments on benchmark datasets demonstrate the effectiveness of our proposed approach. It improves the previous methods by 2.0% on the CIFAR-100 dataset.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.