Mathematics > Numerical Analysis
[Submitted on 20 Nov 2023]
Title:Convergence analysis and parameter estimation for the iterated Arnoldi-Tikhonov method
View PDFAbstract:The Arnoldi-Tikhonov method is a well-established regularization technique for solving large-scale ill-posed linear inverse problems. This method leverages the Arnoldi decomposition to reduce computational complexity by projecting the discretized problem into a lower-dimensional Krylov subspace, in which it is solved. This paper explores the iterated Arnoldi-Tikhonov method, conducting a comprehensive analysis that addresses all approximation errors. Additionally, it introduces a novel strategy for choosing the regularization parameter, leading to more accurate approximate solutions compared to the standard Arnoldi-Tikhonov method. Moreover, the proposed method demonstrates robustness with respect to the regularization parameter, as confirmed by the numerical results.
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.