Computer Science > Machine Learning
[Submitted on 17 Nov 2023 (v1), last revised 23 Jan 2024 (this version, v2)]
Title:Imagination-Augmented Hierarchical Reinforcement Learning for Safe and Interactive Autonomous Driving in Urban Environments
View PDF HTML (experimental)Abstract:Hierarchical reinforcement learning (HRL) incorporates temporal abstraction into reinforcement learning (RL) by explicitly taking advantage of hierarchical structure. Modern HRL typically designs a hierarchical agent composed of a high-level policy and low-level policies. The high-level policy selects which low-level policy to activate at a lower frequency and the activated low-level policy selects an action at each time step. Recent HRL algorithms have achieved performance gains over standard RL algorithms in synthetic navigation tasks. However, we cannot apply these HRL algorithms to real-world navigation tasks. One of the main challenges is that real-world navigation tasks require an agent to perform safe and interactive behaviors in dynamic environments. In this paper, we propose imagination-augmented HRL (IAHRL) that efficiently integrates imagination into HRL to enable an agent to learn safe and interactive behaviors in real-world navigation tasks. Imagination is to predict the consequences of actions without interactions with actual environments. The key idea behind IAHRL is that the low-level policies imagine safe and structured behaviors, and then the high-level policy infers interactions with surrounding objects by interpreting the imagined behaviors. We also introduce a new attention mechanism that allows our high-level policy to be permutation-invariant to the order of surrounding objects and to prioritize our agent over them. To evaluate IAHRL, we introduce five complex urban driving tasks, which are among the most challenging real-world navigation tasks. The experimental results indicate that IAHRL enables an agent to perform safe and interactive behaviors, achieving higher success rates and lower average episode steps than baselines.
Submission history
From: Sang-Hyun Lee [view email][v1] Fri, 17 Nov 2023 03:41:22 UTC (5,818 KB)
[v2] Tue, 23 Jan 2024 06:03:10 UTC (8,742 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.