Computer Science > Machine Learning
[Submitted on 9 Nov 2023]
Title:Diffusion Based Causal Representation Learning
View PDFAbstract:Causal reasoning can be considered a cornerstone of intelligent systems. Having access to an underlying causal graph comes with the promise of cause-effect estimation and the identification of efficient and safe interventions. However, learning causal representations remains a major challenge, due to the complexity of many real-world systems. Previous works on causal representation learning have mostly focused on Variational Auto-Encoders (VAE). These methods only provide representations from a point estimate, and they are unsuitable to handle high dimensions. To overcome these problems, we proposed a new Diffusion-based Causal Representation Learning (DCRL) algorithm. This algorithm uses diffusion-based representations for causal discovery. DCRL offers access to infinite dimensional latent codes, which encode different levels of information in the latent code. In a first proof of principle, we investigate the use of DCRL for causal representation learning. We further demonstrate experimentally that this approach performs comparably well in identifying the causal structure and causal variables.
Submission history
From: Francesco Quinzan [view email][v1] Thu, 9 Nov 2023 14:59:26 UTC (3,602 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.