Computer Science > Robotics
[Submitted on 6 Nov 2023]
Title:Enabling In-Situ Resources Utilisation by leveraging collaborative robotics and astronaut-robot interaction
View PDFAbstract:Space exploration and establishing human presence on other planets demand advanced technology and effective collaboration between robots and astronauts. Efficient space resource utilization is also vital for extraterrestrial settlements. The Collaborative In-Situ Resources Utilisation (CISRU) project has developed a software suite comprising five key modules. The first module manages multi-agent autonomy, facilitating communication between agents and mission control. The second focuses on environment perception, employing AI algorithms for tasks like environment segmentation and object pose estimation. The third module ensures safe navigation, covering obstacle avoidance, social navigation with astronauts, and cooperation among robots. The fourth module addresses manipulation functions, including multi-tool capabilities and tool-changer design for diverse tasks in In-Situ Resources Utilization (ISRU) scenarios. Finally, the fifth module controls cooperative behaviour, incorporating astronaut commands, Mixed Reality interfaces, map fusion, task supervision, and error control. The suite was tested using an astronaut-rover interaction dataset in a planetary environment and GMV SPoT analogue environments. Results demonstrate the advantages of E4 autonomy and AI in space systems, benefiting astronaut-robot collaboration. This paper details CISRU's development, field test preparation, and analysis, highlighting its potential to revolutionize planetary exploration through AI-powered technology.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.