Computer Science > Machine Learning
[Submitted on 5 Nov 2023]
Title:Architecture Matters: Uncovering Implicit Mechanisms in Graph Contrastive Learning
View PDFAbstract:With the prosperity of contrastive learning for visual representation learning (VCL), it is also adapted to the graph domain and yields promising performance. However, through a systematic study of various graph contrastive learning (GCL) methods, we observe that some common phenomena among existing GCL methods that are quite different from the original VCL methods, including 1) positive samples are not a must for GCL; 2) negative samples are not necessary for graph classification, neither for node classification when adopting specific normalization modules; 3) data augmentations have much less influence on GCL, as simple domain-agnostic augmentations (e.g., Gaussian noise) can also attain fairly good performance. By uncovering how the implicit inductive bias of GNNs works in contrastive learning, we theoretically provide insights into the above intriguing properties of GCL. Rather than directly porting existing VCL methods to GCL, we advocate for more attention toward the unique architecture of graph learning and consider its implicit influence when designing GCL methods. Code is available at https: //github.com/PKU-ML/ArchitectureMattersGCL.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.