Computer Science > Computation and Language
[Submitted on 18 Oct 2023]
Title:Gold: A Global and Local-aware Denoising Framework for Commonsense Knowledge Graph Noise Detection
View PDFAbstract:Commonsense Knowledge Graphs (CSKGs) are crucial for commonsense reasoning, yet constructing them through human annotations can be costly. As a result, various automatic methods have been proposed to construct CSKG with larger semantic coverage. However, these unsupervised approaches introduce spurious noise that can lower the quality of the resulting CSKG, which cannot be tackled easily by existing denoising algorithms due to the unique characteristics of nodes and structures in CSKGs. To address this issue, we propose Gold (Global and Local-aware Denoising), a denoising framework for CSKGs that incorporates entity semantic information, global rules, and local structural information from the CSKG. Experiment results demonstrate that Gold outperforms all baseline methods in noise detection tasks on synthetic noisy CSKG benchmarks. Furthermore, we show that denoising a real-world CSKG is effective and even benefits the downstream zero-shot commonsense question-answering task.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.