Computer Science > Machine Learning
[Submitted on 9 Oct 2023 (v1), last revised 28 Feb 2024 (this version, v2)]
Title:DiffCPS: Diffusion Model based Constrained Policy Search for Offline Reinforcement Learning
View PDF HTML (experimental)Abstract:Constrained policy search (CPS) is a fundamental problem in offline reinforcement learning, which is generally solved by advantage weighted regression (AWR). However, previous methods may still encounter out-of-distribution actions due to the limited expressivity of Gaussian-based policies. On the other hand, directly applying the state-of-the-art models with distribution expression capabilities (i.e., diffusion models) in the AWR framework is intractable since AWR requires exact policy probability densities, which is intractable in diffusion models. In this paper, we propose a novel approach, $\textbf{Diffusion-based Constrained Policy Search}$ (dubbed DiffCPS), which tackles the diffusion-based constrained policy search with the primal-dual method. The theoretical analysis reveals that strong duality holds for diffusion-based CPS problems, and upon introducing parameter approximation, an approximated solution can be obtained after $\mathcal{O}(1/\epsilon)$ number of dual iterations, where $\epsilon$ denotes the representation ability of the parametrized policy. Extensive experimental results based on the D4RL benchmark demonstrate the efficacy of our approach. We empirically show that DiffCPS achieves better or at least competitive performance compared to traditional AWR-based baselines as well as recent diffusion-based offline RL methods. The code is now available at this https URL.
Submission history
From: Longx He [view email][v1] Mon, 9 Oct 2023 01:29:17 UTC (1,672 KB)
[v2] Wed, 28 Feb 2024 13:48:09 UTC (1,718 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.