Computer Science > Machine Learning
[Submitted on 4 Oct 2023 (v1), last revised 11 Oct 2024 (this version, v3)]
Title:PostRainBench: A comprehensive benchmark and a new model for precipitation forecasting
View PDF HTML (experimental)Abstract:Accurate precipitation forecasting is a vital challenge of societal importance. Though data-driven approaches have emerged as a widely used solution, solely relying on data-driven approaches has limitations in modeling the underlying physics, making accurate predictions difficult. We focus on the Numerical Weather Prediction (NWP) post-processing based precipitation forecasting task to couple Machine Learning techniques with traditional NWP. This task remains challenging due to the imbalanced precipitation data and complex relationships between multiple meteorological variables. To address these limitations, we introduce the \textbf{PostRainBench}, a comprehensive multi-variable NWP post-processing benchmark, and \textbf{CAMT}, a simple yet effective Channel Attention Enhanced Multi-task Learning framework with a specially designed weighted loss function. Extensive experimental results on the proposed benchmark show that our method outperforms state-of-the-art methods by 6.3\%, 4.7\%, and 26.8\% in rain CSI and improvements of 15.6\%, 17.4\%, and 31.8\% over NWP predictions in heavy rain CSI on respective datasets. Most notably, our model is the first deep learning-based method to outperform NWP approaches in heavy rain conditions. These results highlight the potential impact of our model in reducing the severe consequences of extreme rainfall events. Our datasets and code are available at this https URL.
Submission history
From: Yujin Tang [view email][v1] Wed, 4 Oct 2023 09:27:39 UTC (694 KB)
[v2] Thu, 5 Oct 2023 02:49:36 UTC (693 KB)
[v3] Fri, 11 Oct 2024 03:12:31 UTC (1,096 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.