Computer Science > Computer Vision and Pattern Recognition
[Submitted on 25 Sep 2023 (v1), last revised 28 Apr 2024 (this version, v4)]
Title:Data Upcycling Knowledge Distillation for Image Super-Resolution
View PDF HTML (experimental)Abstract:Knowledge distillation (KD) compresses deep neural networks by transferring task-related knowledge from cumbersome pre-trained teacher models to compact student models. However, current KD methods for super-resolution (SR) networks overlook the nature of SR task that the outputs of the teacher model are noisy approximations to the ground-truth distribution of high-quality images (GT), which shades the teacher model's knowledge to result in limited KD effects. To utilize the teacher model beyond the GT upper-bound, we present the Data Upcycling Knowledge Distillation (DUKD), to transfer the teacher model's knowledge to the student model through the upcycled in-domain data derived from training data. Besides, we impose label consistency regularization to KD for SR by the paired invertible augmentations to improve the student model's performance and robustness. Comprehensive experiments demonstrate that the DUKD method significantly outperforms previous arts on several SR tasks.
Submission history
From: Yun Zhang [view email][v1] Mon, 25 Sep 2023 14:13:26 UTC (8,763 KB)
[v2] Tue, 5 Dec 2023 08:38:52 UTC (20,536 KB)
[v3] Thu, 4 Apr 2024 13:29:25 UTC (38,923 KB)
[v4] Sun, 28 Apr 2024 15:19:15 UTC (38,923 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.