Computer Science > Computers and Society
[Submitted on 20 Sep 2023]
Title:Data-Driven Analysis of Gender Fairness in the Software Engineering Academic Landscape
View PDFAbstract:Gender bias in education gained considerable relevance in the literature over the years. However, while the problem of gender bias in education has been widely addressed from a student perspective, it is still not fully analysed from an academic point of view. In this work, we study the problem of gender bias in academic promotions (i.e., from Researcher to Associated Professor and from Associated to Full Professor) in the informatics (INF) and software engineering (SE) Italian communities. In particular, we first conduct a literature review to assess how the problem of gender bias in academia has been addressed so far. Next, we describe a process to collect and preprocess the INF and SE data needed to analyse gender bias in Italian academic promotions. Subsequently, we apply a formal bias metric to these data to assess the amount of bias and look at its variation over time. From the conducted analysis, we observe how the SE community presents a higher bias in promotions to Associate Professors and a smaller bias in promotions to Full Professors compared to the overall INF community.
Submission history
From: Giordano d'Aloisio [view email][v1] Wed, 20 Sep 2023 12:04:56 UTC (268 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.