Computer Science > Computer Vision and Pattern Recognition
[Submitted on 19 Sep 2023 (v1), last revised 24 Sep 2023 (this version, v2)]
Title:Multi-level feature fusion network combining attention mechanisms for polyp segmentation
View PDFAbstract:Clinically, automated polyp segmentation techniques have the potential to significantly improve the efficiency and accuracy of medical diagnosis, thereby reducing the risk of colorectal cancer in patients. Unfortunately, existing methods suffer from two significant weaknesses that can impact the accuracy of segmentation. Firstly, features extracted by encoders are not adequately filtered and utilized. Secondly, semantic conflicts and information redundancy caused by feature fusion are not attended to. To overcome these limitations, we propose a novel approach for polyp segmentation, named MLFF-Net, which leverages multi-level feature fusion and attention mechanisms. Specifically, MLFF-Net comprises three modules: Multi-scale Attention Module (MAM), High-level Feature Enhancement Module (HFEM), and Global Attention Module (GAM). Among these, MAM is used to extract multi-scale information and polyp details from the shallow output of the encoder. In HFEM, the deep features of the encoders complement each other by aggregation. Meanwhile, the attention mechanism redistributes the weight of the aggregated features, weakening the conflicting redundant parts and highlighting the information useful to the task. GAM combines features from the encoder and decoder features, as well as computes global dependencies to prevent receptive field locality. Experimental results on five public datasets show that the proposed method not only can segment multiple types of polyps but also has advantages over current state-of-the-art methods in both accuracy and generalization ability.
Submission history
From: Junzhuo Liu [view email][v1] Tue, 19 Sep 2023 00:18:50 UTC (1,054 KB)
[v2] Sun, 24 Sep 2023 15:14:29 UTC (960 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.