Computer Science > Computer Vision and Pattern Recognition
[Submitted on 10 Sep 2023]
Title:Exploiting CLIP for Zero-shot HOI Detection Requires Knowledge Distillation at Multiple Levels
View PDFAbstract:In this paper, we investigate the task of zero-shot human-object interaction (HOI) detection, a novel paradigm for identifying HOIs without the need for task-specific annotations. To address this challenging task, we employ CLIP, a large-scale pre-trained vision-language model (VLM), for knowledge distillation on multiple levels. Specifically, we design a multi-branch neural network that leverages CLIP for learning HOI representations at various levels, including global images, local union regions encompassing human-object pairs, and individual instances of humans or objects. To train our model, CLIP is utilized to generate HOI scores for both global images and local union regions that serve as supervision signals. The extensive experiments demonstrate the effectiveness of our novel multi-level CLIP knowledge integration strategy. Notably, the model achieves strong performance, which is even comparable with some fully-supervised and weakly-supervised methods on the public HICO-DET benchmark.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.