Electrical Engineering and Systems Science > Signal Processing
[Submitted on 6 Sep 2023 (v1), last revised 25 Apr 2024 (this version, v2)]
Title:LuViRA Dataset Validation and Discussion: Comparing Vision, Radio, and Audio Sensors for Indoor Localization
View PDF HTML (experimental)Abstract:We present a unique comparative analysis, and evaluation of vision, radio, and audio based localization algorithms. We create the first baseline for the aforementioned sensors using the recently published Lund University Vision, Radio, and Audio (LuViRA) dataset, where all the sensors are synchronized and measured in the same environment. Some of the challenges of using each specific sensor for indoor localization tasks are highlighted. Each sensor is paired with a current state-of-the-art localization algorithm and evaluated for different aspects: localization accuracy, reliability and sensitivity to environment changes, calibration requirements, and potential system complexity. Specifically, the evaluation covers the ORB-SLAM3 algorithm for vision-based localization with an RGB-D camera, a machine-learning algorithm for radio-based localization with massive MIMO technology, and the SFS2 algorithm for audio-based localization with distributed microphones. The results can serve as a guideline and basis for further development of robust and high-precision multi-sensory localization systems, e.g., through sensor fusion, context, and environment-aware adaptation.
Submission history
From: Ilayda Yaman [view email][v1] Wed, 6 Sep 2023 12:57:00 UTC (3,505 KB)
[v2] Thu, 25 Apr 2024 08:54:21 UTC (17,714 KB)
Current browse context:
eess.SP
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.