Quantum Physics
[Submitted on 4 Sep 2023]
Title:Mutual Information Maximizing Quantum Generative Adversarial Network and Its Applications in Finance
View PDFAbstract:One of the most promising applications in the era of NISQ (Noisy Intermediate-Scale Quantum) computing is quantum machine learning. Quantum machine learning offers significant quantum advantages over classical machine learning across various domains. Specifically, generative adversarial networks have been recognized for their potential utility in diverse fields such as image generation, finance, and probability distribution modeling. However, these networks necessitate solutions for inherent challenges like mode collapse. In this study, we capitalize on the concept that the estimation of mutual information between high-dimensional continuous random variables can be achieved through gradient descent using neural networks. We introduce a novel approach named InfoQGAN, which employs the Mutual Information Neural Estimator (MINE) within the framework of quantum generative adversarial networks to tackle the mode collapse issue. Furthermore, we elaborate on how this approach can be applied to a financial scenario, specifically addressing the problem of generating portfolio return distributions through dynamic asset allocation. This illustrates the potential practical applicability of InfoQGAN in real-world contexts.
Current browse context:
quant-ph
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.