Computer Science > Computer Vision and Pattern Recognition
[Submitted on 31 Aug 2023 (v1), last revised 1 Sep 2023 (this version, v2)]
Title:Test-Time Adaptation for Point Cloud Upsampling Using Meta-Learning
View PDFAbstract:Affordable 3D scanners often produce sparse and non-uniform point clouds that negatively impact downstream applications in robotic systems. While existing point cloud upsampling architectures have demonstrated promising results on standard benchmarks, they tend to experience significant performance drops when the test data have different distributions from the training data. To address this issue, this paper proposes a test-time adaption approach to enhance model generality of point cloud upsampling. The proposed approach leverages meta-learning to explicitly learn network parameters for test-time adaption. Our method does not require any prior information about the test data. During meta-training, the model parameters are learned from a collection of instance-level tasks, each of which consists of a sparse-dense pair of point clouds from the training data. During meta-testing, the trained model is fine-tuned with a few gradient updates to produce a unique set of network parameters for each test instance. The updated model is then used for the final prediction. Our framework is generic and can be applied in a plug-and-play manner with existing backbone networks in point cloud upsampling. Extensive experiments demonstrate that our approach improves the performance of state-of-the-art models.
Submission history
From: Ahmed Hatem [view email][v1] Thu, 31 Aug 2023 06:44:59 UTC (3,936 KB)
[v2] Fri, 1 Sep 2023 18:12:45 UTC (3,936 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.