Computer Science > Human-Computer Interaction
[Submitted on 28 Aug 2023]
Title:DoubleCheck: Designing Community-based Assessability for Historical Person Identification
View PDFAbstract:Historical photos are valuable for their cultural and economic significance, but can be difficult to identify accurately due to various challenges such as low-quality images, lack of corroborating evidence, and limited research resources. Misidentified photos can have significant negative consequences, including lost economic value, incorrect historical records, and the spread of misinformation that can lead to perpetuating conspiracy theories. To accurately assess the credibility of a photo identification (ID), it may be necessary to conduct investigative research, use domain knowledge, and consult experts. In this paper, we introduce DoubleCheck, a quality assessment framework for verifying historical photo IDs on Civil War Photo Sleuth (CWPS), a popular online platform for identifying American Civil War-era photos using facial recognition and crowdsourcing. DoubleCheck focuses on improving CWPS's user experience and system architecture to display information useful for assessing the quality of historical photo IDs on CWPS. In a mixed-methods evaluation of DoubleCheck, we found that users contributed a wide diversity of sources for photo IDs, which helped facilitate the community's assessment of these IDs through DoubleCheck's provenance visualizations. Further, DoubleCheck's quality assessment badges and visualizations supported users in making accurate assessments of photo IDs, even in cases involving ID conflicts.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.