Computer Science > Machine Learning
[Submitted on 25 Aug 2023]
Title:DAG-ACFL: Asynchronous Clustered Federated Learning based on DAG-DLT
View PDFAbstract:Federated learning (FL) aims to collaboratively train a global model while ensuring client data privacy. However, FL faces challenges from the non-IID data distribution among clients. Clustered FL (CFL) has emerged as a promising solution, but most existing CFL frameworks adopt synchronous frameworks lacking asynchrony. An asynchronous CFL framework called SDAGFL based on directed acyclic graph distributed ledger techniques (DAG-DLT) was proposed, but its complete decentralization leads to high communication and storage costs. We propose DAG-ACFL, an asynchronous clustered FL framework based on directed acyclic graph distributed ledger techniques (DAG-DLT). We first detail the components of DAG-ACFL. A tip selection algorithm based on the cosine similarity of model parameters is then designed to aggregate models from clients with similar distributions. An adaptive tip selection algorithm leveraging change-point detection dynamically determines the number of selected tips. We evaluate the clustering and training performance of DAG-ACFL on multiple datasets and analyze its communication and storage costs. Experiments show the superiority of DAG-ACFL in asynchronous clustered FL. By combining DAG-DLT with clustered FL, DAG-ACFL realizes robust, decentralized and private model training with efficient performance.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.