Statistics > Machine Learning
[Submitted on 15 Aug 2023 (v1), last revised 11 Sep 2023 (this version, v3)]
Title:SciRE-Solver: Accelerating Diffusion Models Sampling by Score-integrand Solver with Recursive Difference
View PDFAbstract:Diffusion models (DMs) have made significant progress in the fields of image, audio, and video generation. One downside of DMs is their slow iterative process. Recent algorithms for fast sampling are designed from the perspective of differential equations. However, in higher-order algorithms based on Taylor expansion, estimating the derivative of the score function becomes intractable due to the complexity of large-scale, well-trained neural networks. Driven by this motivation, in this work, we introduce the recursive difference (RD) method to calculate the derivative of the score function in the realm of DMs. Based on the RD method and the truncated Taylor expansion of score-integrand, we propose SciRE-Solver with the convergence order guarantee for accelerating sampling of DMs. To further investigate the effectiveness of the RD method, we also propose a variant named SciREI-Solver based on the RD method and exponential integrator. Our proposed sampling algorithms with RD method attain state-of-the-art (SOTA) FIDs in comparison to existing training-free sampling algorithms, across both discrete-time and continuous-time pre-trained DMs, under various number of score function evaluations (NFE). Remarkably, SciRE-Solver using a small NFEs demonstrates promising potential to surpass the FID achieved by some pre-trained models in their original papers using no fewer than $1000$ NFEs. For example, we reach SOTA value of $2.40$ FID with $100$ NFE for continuous-time DM and of $3.15$ FID with $84$ NFE for discrete-time DM on CIFAR-10, as well as of $2.17$ (2.02) FID with $18$ (50) NFE for discrete-time DM on CelebA 64$\times$64.
Submission history
From: Shigui Li [view email][v1] Tue, 15 Aug 2023 17:37:44 UTC (33,005 KB)
[v2] Wed, 16 Aug 2023 08:00:58 UTC (33,006 KB)
[v3] Mon, 11 Sep 2023 15:39:42 UTC (33,382 KB)
Current browse context:
stat.ML
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.