Electrical Engineering and Systems Science > Systems and Control
[Submitted on 15 Aug 2023]
Title:Model predictive control with dynamic move blocking
View PDFAbstract:Model Predictive Control (MPC) has proven to be a powerful tool for the control of systems with constraints. Nonetheless, in many applications, a major challenge arises, that is finding the optimal solution within a single sampling instant to apply a receding-horizon policy. In such cases, many suboptimal solutions have been proposed, among which the possibility of "blocking" some moves a-priori. In this paper, we propose a dynamic approach to move blocking, to exploit the solution already available at the previous iteration, and we show not only that such an approach preserves asymptotic stability, but also that the decrease of performance with respect to the ideal solution can be theoretically bounded.
Current browse context:
eess.SY
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.