Mathematics > Numerical Analysis
[Submitted on 15 Aug 2023 (v1), last revised 1 Apr 2024 (this version, v2)]
Title:On the nature of the boundary resonance error in numerical homogenization and its reduction
View PDF HTML (experimental)Abstract:Numerical homogenization of multiscale equations typically requires taking an average of the solution to a microscale problem. Both the boundary conditions and domain size of the microscale problem play an important role in the accuracy of the homogenization procedure. In particular, imposing naive boundary conditions leads to a $\mathcal{O}(\epsilon/\eta)$ error in the computation, where $\epsilon$ is the characteristic size of the microscopic fluctuations in the heterogeneous media, and $\eta$ is the size of the microscopic domain. This so-called boundary, or ``cell resonance" error can dominate discretization error and pollute the entire homogenization scheme. There exist several techniques in the literature to reduce the error. Most strategies involve modifying the form of the microscale cell problem. Below we present an alternative procedure based on the observation that the resonance error itself is an oscillatory function of domain size $\eta$. After rigorously characterizing the oscillatory behavior for one dimensional and quasi-one dimensional microscale domains, we present a novel strategy to reduce the resonance error. Rather than modifying the form of the cell problem, the original problem is solved for a sequence of domain sizes, and the results are averaged against kernels satisfying certain moment conditions and regularity properties. Numerical examples in one and two dimensions illustrate the utility of the approach.
Submission history
From: Sean Carney [view email][v1] Tue, 15 Aug 2023 04:12:48 UTC (4,338 KB)
[v2] Mon, 1 Apr 2024 18:59:40 UTC (3,870 KB)
Current browse context:
math.NA
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.